

Journal of Organometallic Chemistry 553 (1998) 31-38

Synthese und Reaktionsverhalten monomerer Bis(η^2 -Alkin)-Kupfer(I)-Fluorid- und-Kupfer(I)-Hydrid-Komplexe¹

Katrin Köhler^a, Hans Pritzkow^b, Heinrich Lang^{a,*}

^a Technische Universität Chemnitz, Institut für Chemie, Lehrstuhl Anorganische Chemie, Straße der Nationen 62, D-09111 Chemnitz, Germany ² ^b Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Eingegangen am 3 Februar 1997

Abstract

Monomeric bis(η^2 -alkyne) copper(I) hydride and copper(I) fluoride complexes {[Ti](C=CR)₂}CuX {[Ti] = (η^5 -C₅H₄SiMe₃)₂Ti; R = SiMe₃, **2a** X = F, **5a** X = H; R = ^tBu, **2b** X = F, **5b** X = H} can be in-situ generated: While the copper(I) fluorides **2a** and **2b** are formed by the reaction of {[Ti](C=CR)₂}CuSC₆H₄CH₂NMe₂-2 (**1a** R = SiMe₃, **1b** R = ^tBu) with ⁿBu₄NF, the isostructural copper(I) hydrides **5a** and **5b** can be obtained via β -hydrogen transfer reaction from {[Ti](C=CR)₂}CuEt (**4a** R = SiMe₃, **4b** R = ^tBu). However, molecules **2** and **5** rearrange in solution, depending on the alkynyl ligands present: Compounds **2a** and **5a**, containing Me₃SiC=C groups undergo cleavage of the C_(alkynyl)Si- σ -bond; elimination of Me₃SiX (X = F, H) is observed, producing the heterobimetallic acetylide {[Ti](C=CSiMe₃) (C=CCu)₂ (**3**). To avoid the carbon–silicon-bond cleavage in **2a** and **5a** the Me₃Si group of the alkynyl ligands is replaced by an ^tBu unit. In contrast it is found that in molecules **2b** and **5b** the C_(alkynyl)-Ti– σ -bond is broken, affording {[Ti](C=C^tBu)₂}CuC=C^tBu (**6**), 1/*n* [CuC=C^tBu]_{*n*} (**8**) and 1/2 {[Ti]H}₂ (**7**) or [Ti]F₂ (**9**), respectively. A reaction mechanism for the rearrangement of compounds **2b** and **5b** is discussed.

Zusammenfassung

Monomere Bis(η^2 -Alkin)-Kupfer(I)-Hydrid- bzw. -Kupfer(I)-Fluorid-Komplexe {[Ti](C=CR)₂}CuX {[Ti] = (η^5 -C₅H₄SiMe₃)₂Ti; R = SiMe₃, **2a** X = F, **5a** X = H; R = ^tBu, **2b** X = F, **5b** X = H} lassen sich in-situ darstellen: Während die Kupfer(I)-Fluorid-Komplexe **2a** and **2b** durch Umsetzung von {[Ti](C=CR)₂}CuSC₆H₄CH₂NMe₂-2 (**1a** R = SiMe₃, **1b** R = ^tBu) mit ⁿBu₄NF zugänglich sind, gelingt die Darstellung der isostrukturellen Kupfer(I)-Hydrid-Komplexe **5a** und **5b** in einer β -Wasserstoff-Transfer-Reaktion ausgehend von {[Ti](C=CR)₂}CuEt (**4a** R = SiMe₃, **4b** R = ^tBu). In Abhängigkeit von den Alkinyl-Liganden in **2** und **5** wird ein unterschiedliches Reaktionsverhalten beobachtet: Liegen Me₃SiC=C-Liganden wie in **2a** und **5a** vor, erfolgt eine Spaltung der C_(Alkinyl)-Si- σ -Bindung: Unter Eliminierung von Me₃SiX (X = H, F) wird das heterobimetallische Acetylid {[Ti](C=CSiMe₃)(C=CCu)₂ (**3**) gebildet. Um die Spaltung der Kohlenstoff-Silicium- σ -Bindung zu verhindem, wurde die Me₃Si-Gruppe der Alkinyl-Liganden durch eine ^tBu-Einheit ausgetauscht. Im Vergleich dazu findet man in den Verbindungen **2b** und **5b**, daß eine C_(Alkinyl)-Ti- σ -Bindung unter Bildung von {[Ti](C=C^tBu)₂}CuC=C^tBu (**6**), 1/n [CuC=C^tBu]_n (**8**) und 1/2 {[Ti]H₂ (**7**) oder [Ti]F₂ (**9**) gespalten wird. Eine mechanistische Abfolge zur Bildung dieser Produkte wird vorgestellt. © 1998 Elsevier Science S.A.

Keywords: Copper(I) hydride; Copper(I) fluoride; Organo copper(I); Titanocene; Mechanism

1. Einleitung

Kupfer(I)-Verbindungen der allgemeinen Art $[CuX]_n$ (X = anorganischer oder organischer Rest) weisen in Abhängigkeit der Liganden X oligomeren bzw. polymeren Bau auf [1]. Während z.B. polymere Kupfer(I) Halogenide $[CuX]_n$ (X = Cl, Br, I) im Zinkblende-Gitter kristallisieren [2], zeigt das Kupfer(I)-Hydrid [CuH]_n Wurtzit-Struktur mit

^{*} Corresponding author. Fax: +49-371-5311833.

¹ Herrn Prof Dr. Wolfgang Beck zum 65. Geburtstag gewidmet.

² e-mail: heinrich.lang@chemie.tu-chemnitz.de

hexagonal dichtester Packung [3]. Kupfer(I)-Hydrid ist das bislang einzig bekannte binäre Metall-Hydrid der Gruppe 11; beim Erwärmen zerfällt es jedoch in elementares Kupfer und Wasserstoff [4]. Beständiger ist dagegen der Kupfercluster $[(Ph_3P)CuH]_6$ mit verzerrrt oktaedrischer Anordnung der Kupfer(I)-Zentren [5]. Kupfer(I)-Fluorid, $[CuF]_n$, ist dagegen im Festkörper unbekannt. Es liegt nur in einer CuF₂-Schmelze in Anwesenheit von elementarem Kupfer im Gleichgewicht vor. Beim Abkühlen der Schmelze disproportioniert es zu Kupfer(0) und Kupfer(II)-Fluorid [6].

Wir berichten hier über Versuche zur Stabilisierung monomerer $Bis(\eta^2-alkin)$ -Kupfer(I)-Hydrid- sowie -Kupfer(I)-Fluorid-Einheiten unter Ausnutzung des Chelateffekts von Bis(alkinyl)-Titanocenen.

2. Ergebnisse und Diskussion

Das Kupfer(I)-Thiolat $[CuSC_6H_4CH_2NMe_2-2]_3$ hat sich als Synthon zur Einführung einer breiten Palette monomerer wohldefinierter Kupfer(I)-Organyl-Bausteine, deren oligomere bzw. polymere Analoga $[CuR]_n$ nicht bekannt oder nur schwer zugänglich sind, in Verbindungen der Art $\{[Ti](C \equiv CR^1)_2\}CuR^2 \{[Ti] = (\eta^5 - C_5H_4SiMe_3)_2Ti; R^1, R^2 = einbindiger organischer Rest\}$ etabliert [7]. In diesem Zusammenhang ist es von Interesse, ob sich dieser Syntheseweg auch zur Stabilisierung von im freien Zustand nicht beständigem Kupfer(I)-Fluorid bzw. Kupfer(I)-Hydrid übertragen läßt.

Bringt man die Verbindung {[Ti]($C \equiv CSiMe_3$)₂}CuSC₆H₄CH₂NMe₂-2 (**1a**) mit äquivalenten Mengen ⁿBu₄NF in Tetrahydrofuran/Diethylether in einem Mischungsverhältnis von 1:1 bei 0°C zur Reaktion, so wird unter Farbwechsel von braun nach rot und Abscheidung von ⁿBu₄NSC₆H₄CH₂NMe₂-2 zunächst der Komplex {[Ti]($C \equiv CSiMe_3$)₂}CuF (**2a**) gebildet. Dieser stabilisiert sich unter Spaltung einer C_(Alkinyl)-Si- σ -Bindung: Eliminierung von Me₃SiF führt zum dimeren Titan-Kupfer-Acetylid {[Ti]($C \equiv CSiMe_3$)($C \equiv CCu$)₂ (**3**). Die Ausbeute beträgt 49%. Die Entstehung von **2a** konnte IR-spektroskopisch und MS-spektrometrisch nachgewiesen werden.

Der heterobimetallische Titan-Kupfer-Acetylid-Komplex **3** konnte erstmals durch Umsetzung von $[Ti](C \equiv CSiMe_3)_2$ mit 1/4 $[CuO^tBu]_4$ dargestellt werden [8]. In dieser Verbindung ist ein Acetylid-Baustein sowohl an ein Titan(IV)als auch an ein Kupfer(I)-Zentrum σ -gebunden. Die Stabilisierung des Kupfer(I)-Zentrums des gebildeten heterobimetallischen Acetylid-Fragments $[Ti](C \equiv CSiMe_3)(C \equiv CCu)$ erfolgt durch doppelte η^2 -Koordination der beiden Alkinyl-Einheiten eines weiteren $[Ti](C \equiv CSiMe_3)(C \equiv CCu)$ -Bausteins unter Bildung des dimer gebauten Komplexes **3**. Das planare { $[Ti](C \equiv CSi)(C \equiv CCu)$ }-Segment repräsentiert dabei einen Ausschnitt aus der Polymerstruktur von Kupfer(I)-Acetyliden [9].

Eine weitere Möglichkeit zur Darstellung von **3** ist ausgehend von $\{[Ti](C \equiv CSiMe_3)_2\}$ CuEt (**4a**) gegeben: Ethen-Eliminierung ergibt zunächst als Intermediat das Kupfer(I)-Hydrid **5a**, welches analog zu **2a** unter Spaltung einer C_(Alkinvl)-Si- σ -Bindung und Me₃SiH-Eliminierung zu Verbindung **3** führt [7a].

Während der spektroskopische Nachweis der Zwischenverbindung $\{[Ti](C \equiv CSiMe_3)_2\}$ CuH (5a) nicht gelang, konnte dessen Existenz jedoch ausgehend von $\{[Ti](C \equiv CSiMe_3H)_2\}$ CuⁿBu eindeutig bestätigt werden [7a].

Schema 1. Möglicher Mechanismus zur Bildung der Komplexe 6, 8 und 9 ausgehend von 2b.

Um die Eliminierung von Me₃SiX (X = F, H) in den Verbindungen **2a** und **5a** und damit die Spaltung einer der beiden C_(Alkinyl)–Si– σ -Bindungen zu vermeiden, wurde der Me₃Si-Baustein der Alkinyl-Liganden durch eine ^tBu-Gruppe ausgetauscht mit dem Ziel, monomeres Kupfer(I)-Fluorid bzw. Kupfer(I)-Hydrid auf diese Weise in Substanz isolieren zu können. Jedoch zeigte sich, daß das {[Ti](C=C^tBu)₂}CuH (**5b**) (erhalten durch β -Wasserstoff-Transfer-Reaktion ausgehend von **4b**) und auch das Kupfer(I)-Fluorid **2b** (erhalten durch Umsetzung von **1b** mit ⁿBu₄NF) in Lösung nicht beständig sind. Als Produkte erhält man in beiden Fällen {[Ti](C=C^tBu)₂}CuC=C^tBu (**6**), 1/n [CuC=C^tBu]_n (**8**) sowie 1/2 {[Ti]H₂ (**7**) (ausgehend von **5b**) oder [Ti]F₂ (**9**) (ausgehend von **2b**).

Die erhaltene Produktpalette zeigt, daß in den Verbindungen **2b** und **5b** die ^tBuC=C-Gruppe erhalten bleibt, aber dennoch eine Umorientierung des { $[Ti](C=C^{t}Bu)_{2}$ }CuX-Gerüstes (X = F, H) stattfindet. Eine mögliche mechanistische Abfolge ist stellvertretend für das Kupfer(I)-Fluorid **2b** in Schema 1 aufgeführt.

Als einleitender Schritt kann ein nukleophiler Angriff des Fluorid-Liganden in **2b** auf das Titan-Zentrum der Bis(alkinyl)titanocen-Einheit erfolgen (Schema 1). Spaltung einer $C_{(Alkinyl)}$ -Ti- σ -Bindung führt unter Abscheidung von $1/n [CuC \equiv C^tBu]_n$ (8) zum Alkinyltitanocenfluorid 10. Dieses ergibt unter Austausch der Liganden Fluorid und *tert*-Butylacetylid die Titanocen-Verbindungen [Ti]F₂ (9) und [Ti](C≡C^tBu)₂ (11). Nachfolgend reagiert 11 als metallorganische π -Pinzette mit einem halben Äquivalent des zuvor freigesetzten $1/n [CuC \equiv C^tBu]_n$ (8) zum Kupfer(I)-Acetylid-Komplex 6. Unterstützt wird die in Schema 1 vorgeschlagene Reaktionssequenz durch die Isolierung der Verbindungen 6, 8 und 9. Unabhängig davon konnten in parallelen Arbeiten isostrukturelle Verbindungen von 10 isoliert und deren Reaktionsverhalten untersucht werden [10]. Während die doppelt silylenverbrückten Titanocene (η^5 -C₅H₃SiMe₂)₂Ti(Cl)(C≡CR) (R = einbindiger organischer Rest) in Substanz isoliert und deren Bau durch Röntgenstrukturanalysen aufgeklärt werden konnte, zeigen die unverbrückten Titanocene [Ti](Cl)(C≡CR) {[Ti] = (η^5 -C₅H₄SiMe₃)₂Ti} in Lösung das für Verbindung 10 postulierte Verhalten [10].

Die neu dargestellten Verbindungen **1b**, **4b** und **6** wurden durch die Elementaranalyse und durch spektroskopische Methoden vollständig charakterisiert. Sie zeigen ein für Komplexe des allgemeinen Typs $\{[Ti](C \equiv CR)_2\}ML_n$ (R = einbindiger organischer Rest, ML_n = niedervalentes Metall-Fragment) charakteristisches spektroskopisches Verhalten [7a,11].

Abb. 1. Molekülstruktur von { $[Ti](C \equiv C^tBu)_2$ }CuC $\equiv C^tBu$ (6) im Kristall [14]. Ausgewählte Bindungslängen und Bindungswinkel sind Tabelle 1 zu entnehmen.

In den IR-Spektren findet man eine für η^2 -koordinierte Alkine typische bathochrome Verschiebung der C=C-Streckschwingungsbande von 2068 cm⁻¹ im [Ti](C=C^tBu)₂ (11) [12] nach 1960 in 1b, 1907 in 4b bzw. 1941 cm⁻¹ in 6. Dabei ist die ν (C=C)-Bande um so weiter langwellig verschoben, je stärker die σ -Donorfähigkeit des an das Kupfer(I)-Zentrum η^1 -gebundenen Restes ist. In {[Ti](C=C^tBu)₂}CuC=C^tBu (6) wird eine weitere C=C-Streckschwingungsbande bei 2099 cm⁻¹ beobachtet, die der unkoordinierten CuC=C^tBu-Gruppe zugeordnet werden kann.

Die ¹³C{¹H}-NMR-Spektren von **1b**, **4b** und **6** zeigen, daß die Resonanzsignale der C_{α}-Alkinyl-Kohlenstoff-Atome des [Ti](C=C^tBu)₂-Fragments im Vergleich zu **11** [12] tieffeldverschoben sind; dies trifft auch für die entsprechenden C_{β}-Alkinyl-Kohlenstoff-Atome in **1b** und **6** zu. Bemerkenswert im ¹³C{¹H}-NMR-Spektren von **4b** ist, daß eine im Vergleich zu **11** Hochfeldverschiebung des Signals der C_{β}-Alkinyl-Kohlenstoff-Atome in **4b** mit ca. 40 ppm am größten ist. Das von **1b** und **6** abweichende Verhalten der Verbindung **4b** steht im Einvernehmen mit bindungstheoretischen Betrachtungen: Extended-Hückel- und ab-initio-Rechnungen ergaben, daß in Verbindungen dieser Art polarisierte C=C-Dreifachbindungen mit einem größeren Koeffizienten an den C_{β}-Atome und geeigneter Kupfer-Orbitale wird stärker dominierend, je elektronenreicher das jeweilige CuR-Fragment ist. Als Resultat davon findet man im ¹³C{¹H}-NMR-Spektrum von **4b** stärker abgeschirmte C_{β}-Kohlenstoff-Atome als in **1b** und **6**. Diese Betrachtungsweise steht im Einklang mit IR-spektroskopischen und röntgenstrukturanalytischen Ergebnissen isostruktureller Verbindungen [7,11].

Der Bau der Verbindung **6** wurde durch eine Röntgenstrukturanalyse belegt (Abb. 1, Tabelle 1 und Tabelle 2). Verbindung 6 kristallisiert in der triklinen Raumgruppe $P\overline{1}$; in der Elementarzelle ist zusätzlich ein Molekül Benzol

Tabelle 1 Abstände [pm] und Winkel [°] der Verbindung 6 ^a								
Abstände								
Ti1–Cu1	290.9(4)	Cu1–C13	190.3(4)	Ti1-Cl	210.1(4)			
Ti1-C7	208.3(4)	C1–C2	123.9(4)	C7-C8	122.9(4)			
Cu1-C1	206.6(3)	Cu1–C2	214.6(4)	Cu1–C7	206.8(4)			
Cu1-C8	215.7(4)	C13-C14	120.0(4)	Ti1-D1 ^b	206.8			
				Ti1–O2 ^b	207.0			
Winkel								
Ti1-Cu1-C13	175.8(1)	Ti1-C1-C2	165.0(2)	Ti1-C7-C8	165.3(2)			
C1-C2-C3	161.2(3)	C7-C8-C9	160.0(3)	C1-Ti1-C7	90.5(1)			
Cu1-C13-C14	173.1(3)	C13-C14-C15	178.5(3)	D1-Ti1-D2 ^b	133.8			

^aIn Klammern: Standardabweichungen der letzten angegebenen Dezimalstelle.

^bD1, D2 = Mittelpunkte der Cyclopentadienyl-Liganden.

Tabelle 2

Atomkoordinaten ($\times 10^4$) von Verbindung **6**; U_{eq} ($\times 10^3$ Å²) ist definiert als 1/3 der Spur des orthogonalen Tensors U_{ij}^a

Atom	x	y	z	U _{ea}
	450(1)	4470(1)	2126(1)	34(1)
Ti(1)	2188(1)	6977(1)	2449(1)	31(1)
Si(1)	2055(1)	8575(1)	4479(1)	51(1)
Si(2)	3170(1)	6893(1)	563(1)	42(1)
C(1)	2144(3)	5073(3)	1792(2)	34(1)
C(2)	1866(3)	3883(3)	1474(2)	35(1)
C(3)	1909(3)	2559(3)	987(2)	39(1)
C(4)	688(3)	2090(3)	372(2)	52(1)
C(5)	3149(3)	2690(3)	660(2)	55(1)
C(6)	1984(4)	1538(3)	1423(2)	57(1)
C(7)	467(3)	6343(3)	2765(2)	33(1)
C(8)	-575(3)	5732(3)	2812(2)	35(1)
C(9)	- 1904(3)	5466(3)	2981(2)	42(1)
C(10)	-2190(3)	6794(3)	3413(2)	55(1)
C(11)	- 1943(3)	4507(3)	3457(2)	52(1)
C(12)	-2925(3)	4902(4)	2263(2)	57(1)
C(13)	-682(3)	2853(3)	1990(2)	41(1)
C(14)	- 1412(3)	1886(3)	1980(2)	40(1)
C(15)	-2307(3)	706(3)	1988(2)	48(1)
C(16)	- 1858(5)	333(4)	2693(2)	77(1)
C(17)	-2280(4)	-422(3)	1317(2)	68(1)
C(18)	-3700(4)	995(4)	1959(3)	77(1)
C(19)	2985(3)	7798(3)	3772(2)	42(1)
C(20)	3814(3)	8450(3)	3415(2)	48(1)
C(21)	4432(3)	7543(4)	2985(2)	53(1)
C(22)	4010(3)	6305(4)	3073(2)	52(1)
C(23)	3121(3)	6464(3)	3548(2)	45(1)
C(24)	1243(4)	7262(4)	4820(2)	67(1)
C(25)	867(4)	9499(4)	4100(2)	66(1)
C(26)	3249(4)	9764(4)	5266(2)	81(1)
C(27)	2265(3)	7546(3)	1308(2)	37(1)
C(28)	2690(3)	8690(3)	1897(2)	44(1)
C(29)	1672(4)	8975(3)	2273(2)	49(1)
C(30)	576(3)	8015(3)	1908(2)	47(1)
C(31)	930(3)	7133(3)	1332(2)	40(1)
C(32)	3597(4)	8251(4)	146(2)	63(1)
C(33)	2042(4)	5511(3)	-156(2)	56(1)
C(34)	4703(3)	6380(4)	944(2)	53(1)

^aIn Klammern: Abweichungen der letzten angegebenen Dezimalstelle.

enthalten. Abb. 1 zeigt, daß sowohl eine η^2 -Koordination beider Alkinyl-Einheiten des Bis(alkinyl)titanocen-Fragments als auch eine η^1 -Koordination des 'BuC=C-Baustein an das Kupfer(I)-Zentrum in **6** vorliegt. Die Alkinyl-Kohlenstoff-Atome C1, C2, C7, C8, C13 und C14, sowie das Titan(IV)- und das Kupfer(I)-Zentrum bilden eine Ebene (maximale Abweichung von einer bestmöglich gewählten Ebene 10.0 pm). Im nahezu linearen CuC=C'Bu-Baustein [Cu-C13-C14 173.1(3)°, C13-C14-C15 178.5(3)°] beträgt der C=C-Dreifachbindungsabstand 120.0(4) pm. Dagegen werden durch die η^2 -Koordination der C₂-Bausteine C1-C2 bzw. C7-C8 an das Kupfer(I)-Zentrum zum einen die C=C-Dreifachbindungsabstände [C1-C2 123.9(4), C7-C8 122.9(4) pm] aufgeweitet, zum anderen findet man, daß die Ti-C=C-^tBu-Einheiten [Ti1-C1-C2 165.0(2), Ti1-C7-C8 165.3(2), C1-C2-C3 161.2(3), C7-C8-C9 160.0(3)°] abgewinkelt werden. Aufgrund des Pinzetteneffekts erfolgt eine *trans*-Abwinkelung der Ti-C=C-^tBu-Bausteine des Bis(alkinyl)titanocen-Fragments (Abb. 1), welches typisch für diese Verbindungsklasse ist [7,11]. Als Resultat davon liegen unterschiedlich lange Cu-C_a-[Cu1-C1 206.6(3), Cu1-C7 206.8(4) pm] und Cu-C_β-Bindungsabstände [Cu1-C2 214.6(4), Cu1-C8 215.7(4) pm] vor (Tabelle 1). Der Cu1-C13-Abstand beträgt 190.3(4) pm und liegt damit in einem für Cu-C(sp)-Bindungen typischen Bereich [1a,7b,8,11a,15].

3. Experimenteller Teil

Alle Reaktionen wurden unter Inertgas (N_2) in absolutierten und frisch destillierten Lösungsmitteln (Tetrahydrofuran, Diethylether: Natrium; n-Pentan: CaH₂) durchgeführt. Das zur Filtration verwendete Kieselgur (Fa. Riedel de Haen) wurde bei 25°C und 10⁻² mbar entgast und mit Stickstoff beladen. IR (KBr-Verreibung bzw. NaCl-Platten): Perkin-Elmer, Modell 893 G. ¹H-, ¹³C{¹H}-NMR: Bruker AC 200; ¹H-NMR: 200.13 MHz, Standard intern durch Lösungsmittel (CDCl₃ δ = 7.27, C₆D₆ δ = 7.16, d₈-Toluol δ = 2.09; ¹³C{¹H}-NMR: 50.323 MHz, Standard intern durch Lösungsmittel CDCl₃ δ = 77.0, C₆D₆ δ = 128. EI-, FD-MS: Finnigan (Varian) MAT, Modell 8400. C,H-Elementaranalysen: C,H,N-Analysator der Fa. Carlo Erba. Die Schmelz- und Zersetzungspunkte wurden mit einem Schmelzpunktgerät der Fa. Gallenkamp (Modell MFB 595 010 M) bestimmt.

3.1. Synthese von $\{[Ti](C \equiv C^{\dagger}Bu)_{2}\}CuSC_{6}H_{4}CH_{2}NMe_{2}-2$ (**1b**)

Zu 200 mg (0.41 mmol) [Ti]($C \equiv C^{\dagger}Bu$)₂ (11) [12], gelöst in 50 ml Diethylether/Tetrahydrofuran (1:1), werden 95 mg (0.41 mmol) [CuSC₆H₄CH₂NMe₂-2]₃ [16] in einer Portion gegeben und 3 h bei 25°C gerührt. Die Lösungsmittel werden im Ölpumpenvakuum entfernt und der Rückstand in 40 ml Diethylether aufgenommen. Nach Filtration der Lösung durch Kieselgur wird auf 10 ml engeengt. Kristallisation bei -30°C ergibt 290 mg der Verbindung 1b (0.41 mmol, 98% bezogen auf engesetztes 11) als braunes Pulver.

Anal. Gef: C, 61.99; H, 7.83. $C_{37}H_{56}CuNSSi_2Ti$ (714.51) ber.: C, 62.19; H, 7.90%. Fp.: 131°C. IR (KBr): $\nu(C \equiv C)$ 1960 cm⁻¹. ¹H-NMR (CDCl₃): $\delta = 0.29$ (s, 18 H, SiMe₃), 1.32 (s, 18 H, ¹Bu), 2.36 (s, 6 H, NMe₂), 3.83 (s, 2 H, NCH₂), 5.9–6.1 (m, 8 H, C₅H₄), 6.8–7.4 (m, 4 H, C₆H₄). ¹³C{¹H}-NMR (CDCl₃): $\delta = 0.1$ (SiMe₃), 31.0 (CMe₃), 32.0 (CMe₃), 46.0 (NMe₂), 62.4 (NCH₂), 113.6 (C₅H₄), 116.4 (C₅H₄), 119.3 (¹C, C₅H₄), 120.7, 124.7, 127.3, 135.0 (C₆H₄), 139.2, 147.5 (¹C, C₆H₄), 141.1 (TiC=C), 150.2 (TiC=C). FD-MS (*m*/*z*): M⁺ 713.

3.2. Synthese von $\{[Ti](C \equiv C^{t}Bu)_{2})\}$ CuEt (4b)

300 mg (0.42 mmol) {[Ti](C≡C^tBu)₂}CuSC₆H₄CH₂NMe₂-2 (**1b**) werden in 50 ml Diethylether gelöst und bei -40° C 0.45 ml (0.42 mmol) eine 0.9 M ZnEt₂/Hexan-Lösung zugegeben. Es erfolgt ein Farbwechsel der Reaktionslösung von braun nach tiefrot. Nach 2 h Rühren bei -40° C wird das Lösungsmittel im Ölpumpenvakuum entfernt, der Rückstand in *n*-Pentan aufgenommen und die Lösung durch Kieselgur filtriert. Entfernen des Lösungsmittels im Ölpumpenvakuum ergibt 240 mg der Verbindung **4b** (0.42 mmol, 98% bezogen auf eingesetztes **1b**) als rotes Pulver.

Anal. Gef.: C, 61.71; H, 8.29. $C_{30}H_{49}CuSi_2Ti$ (577.32) ber.: C, 62.41; H, 8.56%. Zers.: $-10^{\circ}C$ (in Lösung). IR (KBr): $\nu(C \equiv C)$ 1907 cm⁻¹. ¹H-NMR (d₈-Toluo1, $-20^{\circ}C$): $\delta = 0.33$ (s, 18 H, SiMe₃), 1.51 (s, 18 H, ^tBu), 1.82 (t, ³J_{HH} 7.0 Hz, 3 H, CH₂CH₃), 2.34 (q, ³J_{HH} = 7.0 Hz, 2 H, CuCH₂), 5.03 (s, 4 H, C₅H₄), 5.77 (s, 4 H, C₅H₄). ¹³C{¹H}-NMR (d₈-Toluol, $-20^{\circ}C$): $\delta = 1.2$ (SiMe₃), 7.3 (CuCH₂), 18.6 (CH₂CH₃), 32.5 (CMe₃), 33.5 (CMe₃), 110.9 (C₅H₄), 112.6 (C₅H₄), 114.7 (ⁱC, C₅H₄), 129.7 (C $\equiv C^{t}Bu$), 172.1 (Ti^C $\equiv C$). FD-MS (*m*/*z*): M⁺ -Et 547.

3.3. Synthese von $\{[Ti](C \equiv CSiMe_3)(C \equiv CCu)\}_2$ (3)

(A) Ausgehend von **1a**. 300 mg (0.40 mmol) { $[Ti](C \equiv CSiMe_3)_2$ }CuSC₆H₄CH₂NMe₂-2 (**1a**) [11e] werden in 50 ml Diethylether/Tetrahydrofuran (1:1) gelöst und unter Rühren mit 0.4 ml (0.40 mmol) einer 1 M ⁿBu₄NF/Tetrahydrofuran-Lösung versetzt. Die Farbe der Reaktionslösung ändert sich von braun nach tiefrot. Es wird 1 h gerührt und anschließend das Lösungsmittel im Ölpumpenvakuum entfernt. Der Rückstand wird in 40 ml *n*-Pentan aufgenommen und durch Kieselgur filtriert. Die Lösung ergibt nach Einengen auf 10 ml und Abkühlen auf -30° C 200 mg der Verbindung **3** [8] (0.20 mmol, 49% bezogen auf eingesetztes **1a**) in Form roter Kristalle.

(B) Ausgehend von 4a: 120 mg (0.20 mmol) $\{[Ti](C \equiv CSiMe_3)_2\}$ CuEt (4a) [7a] werden in 40 ml Diethylether gelöst und 1 h bei 25°C gerührt. Einengen der Lösung auf 10 ml und Abkühlen auf -30°C ergibt 100 mg der Verbindung 3 [8] (0.10 mmol, 49% bezogen auf eingesetztes 4a) als rote Kristalle. Das gleiche Ergebnis wird erhalten, wenn eine etherische Lösung von 4a bei -30°C für einige Tage gehalten wird.

Verbindung 3 wurde durch Spektrenvergleich mit authentischem 3 charakterisiert. Die analytischen und spektroskopischen Daten dieser Verbindung sind in Lit. [8] aufgeführt.

3.4. Synthese von $\{[Ti](C \equiv C^{t}Bu)_{2}\}CuC \equiv C^{t}Bu$ (6)

(A) Ausgehend von **1b**: 250 mg (0.35 mmol) { $[Ti](C \equiv C^{t}Bu)_{2}$ }CuSC₆H₄CH₂NMe₂-2 (**1b**) werden in 50 ml Diethylether/Tetrahydrofuran (1:1) gelöst und unter Rühren 0.35 ml (0.35 mmol) eine 1 M ⁿBu₄NF/Tetrahydrofuran-Lösung hinzugefügt, wobei sich die Farbe der Reaktionslösung von braun nach tiefrot ändert. Es wird 1 h gerührt und anschließend alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Der Rückstand wird in 40 ml Diethylether aufgenommen und zur Abtrennung des enstandenen ⁿBu₄NSC₆H₄CH₂NMe₂-2 durch Kieselgur filtriert.

Das Lösungsmittel wird entfert und der Rückstand in 40 ml *n*-Pentan aufgenommen. Von in *n*-Pentan unlöslichem [Ti]F₂ (9) [17] wird abgetrennt. Aus der roten Lösung kristallisieren nach Einengen auf 10 ml und Abkühlen auf -30° C 110 mg der Verbindung 6 (0.17 mmo1, 50% bezogen auf eingesetztes 1b). Nach Entfernen des Lösungsmittels erhält man 25 mg [CuC=C^tBu]_n (8) [9b] (0.17 mmol, 49% bezogen auf eingesetztes 1b).

2b: Die Isolierung von reinem **2b** in Substanz gelang bislang nicht. IR (NaCl): ν (C=C) 1919 cm⁻¹. EI-MS [m/z (rel. Intens.)]: M⁺ 565 (20), {[Ti](C₂Bu)₂}Cu⁺ 546 (10), {[Ti](C₂Bu)}Cu⁺ 466 (30), [Ti](C₂Bu)⁺ 402 (20), [Ti]⁺ 322 (100), [Ti]⁺-SiMe₃ 250 (35), [Ti]⁺⁻² SiMe₃ 178 (10), SiMe₃⁺ 73 (25).

6: Anal. Gef.: C, 64.53; H, 7.94. $C_{34}H_{53}CuSi_2Ti$ (629.39) ber.: C, 64.88; H, 8.49%. Fp.: 71°C. IR (KBr): ν (C=C) 2099 w, 1941 m cm⁻¹. ¹H-NMR (C_6D_6): δ = 0.21 (s, 18 H, SiMe₃), 1.50 (s, 9 H, ^tBu), 1.75 (s, 18 H, tBu), 5.41 (pt, J_{HH} = 2.3 Hz, 4 H, C₅H₄), 5.72 (pt, J_{HH} = 2.3 Hz, 4 H, C₅H₄). ¹³C{¹H}-NMR (C_6D_6): δ = 0.4 (SiMe₃), 29.6 (CMe₃), 31.7 (CMe₃), 32.5 (CMe₃), 112.3 (C_5H_4), 115.1 (C_5H_4), 117.6 (ⁱC, C_5H_4), 123.4 (CuC=C^tBu), 144.2 (TiC=C), 151.7 (TiC=C); die Signale des quartären Kohlenstoff-Atoms der ^tBu-Gruppe und des C_α-Atoms des CuC=C^tBu-Bausteins werden von anderen Signal überlagert und können daher nicht quantifiziert werden. EI-MS [m/z (rel. Intens.)]: M⁺ 628 (30), M⁺-C₂Bu 546 (30), M⁺-2 C₂Bu 466 (100), M⁺-CuC₄Bu₂ 402 (65).

(*B*) Ausgehend von **4b**: 240 mg (0.38 mmol) {[Ti]($C \equiv C^{t}Bu$)₂}CuEt (**4b**) werden in 40 ml Diethylether gelöst und 1 h bei 25°C gerührt. Einengen der Lösung auf 10 ml und Abkühlen auf -30°C ergibt 110 mg der Verbindung **6** (0.17 mmol, 83% bezogen auf eingesetztes **4b**) als rote Kristalle. Nach Entfernen des Lösungsmittels erhält man 25 mg [CuC \equiv C^tBu]_n (**8**) [9b] (0.17 mmol, 46% bezogen auf eingesetztes **1b**). Das gleiche Ergebnis wird erhalten, wenn eine etherische Lösung von **6** bei -30°C für einige Tage gehalten wird.

Kristallstrukturdaten von **6** [14]. Einkristalle von **6** wurden durch Abkühlen einer *n*-Pentan-Lösung von **6** auf -30° C erhalten. Kristalldimension des vermessenen Kristalls: $0.7 \times 0.6 \times 0.2 \text{ mm}^3$. **6** kristallisiert in der triklinen Raumgruppe PĪ mit a = 1051.4(11), b = 1070.6(13), c = 1917(2) pm, $\alpha = 104.54(9)$, $\beta = 99.08(8)$, $\gamma = 97.46(9)^{\circ}$, $V = 2030(4) \times 10^{6}$ pm³ und Z = 2. Mit einem Siemens-Stoe AED2-Vierkreisdiffraktometer wurden bei 218 K im Bereich von $4 \le 2\Theta \ge 50^{\circ}$ 7019 unabhängige Reflexe gemessen [μ (Mo-K_{α}) = 0.804 mm⁻¹; Graphitmonochromator, $\lambda = 71.070$ pm; Lp und exp. Absorptionskorrektur (Ψ -Scan)].

Strukturlösung und Verfeinerung: Direkte Methoden (SHELXS-86), least-squares Methode mit allen gemessenen Reflexen gegen F² (SHELXL-93) [18]. Die Verfeinerung konvergiert zu $wR_2 = 0.101$ und $R_1 = 0.040$ [für 5263 beobachtete Reflexe, $I \ge 2\sigma(I)$]; verfeinerte Parameter: 416; Restelektronendichte: 0.32 eÅ⁻³.

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Hermann– Schlosser-Stiftung/Degussa AG Frankfürt (K.K.) für die finanzielle Unterstützung dieser Arbeit.

Bibliographie

- (a) G. van Koten, J.G. Noltes, in: F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, 14, Pergamon Press, Oxford, 1982, p. 709; (b) J.A.J. Jarvis, R. Pearce, M.F. Lappert, J. Chem. Soc., Dalton Trans. (1977) 999; (c) H. Gilman, R.G. Jones, L.A.J. Woods, Org. Chem. 17 (1952) 1630; (d) G. Costa, A. Camus, L. Gatti, N. Marsich, J. Organomet. Chem. 174 (1979) 121; (e) J.M. Gus, I. Sotofte, G. van Koten, J.G. Noltes, J. Chem. Soc., Chem. Commun. (1972) 446; (f) E.M. Meyer, S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, Organometallics 8 (1989) 1067; (g) T. Tsuda, T. Yazawa, K. Watanabe, T. Fujii, T. Saegusa, J. Org. Chem. 46 (1981) 192; (h) G. Costa, A. Camus, L. Gatti, N. Marsich, J. Organomet. Chem. 5 (1966) 568; (i) A. Camus, N. Marsich, J. Organomet. Chem. 14 (1968) 441.
- [2] Gmelin-Handbuch der Anorganischen Chemie, Organo-Kupfer Verbindungen, Teil 3 und 4, Springer-Verlag, Berlin, 1986, 1987.
- [3] G. Brauer in Handbuch der Präparativen Anorganischen Chemie II, Ferdinand Enke-Verlag, Stuttgart, 1978, p. 971.
- [4] E. Wiberg, W. Henle, Z. Naturforsch. 7b (1952) 250.
- [5] D.M. Brestensky, D.E. Huseland, C. McGettigan, J.M. Stryker, Tetrahedron Lett. 29 (1988) 3749.
- [6] A.G. Massey, in: J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, Pergamon Press New York, 1973, Ch. 27.
- [7] (a) M.D. Janssen, K. Köhler, M. Herres, A. Dedieu, W.J.J. Smeets, A.L. Spek, D.M. Grove, H. Lang, G. van Koten, J. Am. Chem. Soc. 118 (1996) 4817; (b) H. Lang, M. Weinmann, Synlett (1996) 1.
- [8] M.D. Janssen, M. Herres, L. Zsolnai, D.M. Grove, A.L. Spek, H. Lang, G. van Koten, Organometallics 14 (1995) 1098.
- [9] (a) P.W.R. Corfield, H.M.M. Shearer, in: G.E. Coates, M.L.H. Green, K. Wade (Eds.), Organometallic Compounds, Vol. 2, Chapman and Hall, London, 1977; (b) G.E. Coates, C. Parkin, J. Inorg. Nucl. Chem. 22 (1961) 59; (c) R.N. Haszeldine, J. Chem. Soc. (1951) 588.
- [10] (a) H. Lang, W. Frosch, I.Y. Wu, S. Blau, B. Nuber, Inorg. Chem., 35 (1996) 6266.; (b) H. Lang, S. Blau, H. Pritzkow, L. Zsolnai, Organometallics 14 (1995) 1850.
- [11] (a) H. Lang, K. Köhler, S. Blau, Coord. Chem. Rev. 143 (1995) 113; (b) H. Lang, K. Köhler, M. Büchner, Chem. Ber. 128 (1995) 525; (c)
 H. Lang, K. Köhler, B. Schiemenz, J. Organomet. Chem. 495 (1995) 135; (d) H. Lang, M. Herres, K. Köhler, S. Blau, S. Weinmann, G.

Rheinwald, W. Imhof, J. Organomet. Chem. 505 (1995) 85; (e) M.D. Janssen, M. Herres, L. Zsolnai, A.L. Spek, D.M. Grove, H. Lang, G. van Koten, Inorg. Chem. 35 (1996) 2476; (f) H. Lang, M. Herres, L. Zsolnai, W. Imhof, J. Organomet. Chem. 409 (1991) C7; (g) M. Herres, H. Lang, J. Organomet. Chem. 480 (1994) 235; (h) H. Lang, L. Zsolnai, J. Organomet. Chem. 406 (1991) C5; (i) H. Lang, W. Imhof, Chem. Ber. 125 (1992) 1307.

- [12] H. Lang, D. Seyferth, Z. Naturforsch. 45b (1990) 212.
- [13] (a) H. Lang, K. Köhler, L. Zsolnai, J. Chem. Soc., Chem. Commun. (1996) 2043; (b) K. Köhler, S.J. Silverio, I. Hyla-Kryspin, R. Gleiter, L. Zsolnai, A. Drieß, G. Huttner, H. Lang, Organometallics, im Druck.
- [14] Weitere Enzelheiten zur Kristalstrukturuntersuchung können beim Fachinformations-zentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Informationen mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-59400, der Autorennamen und des Zeitschriftenzitats an gefordert werden.
- [15] (a) D.L. Reger, J.E. Collins, M.F. Huff, A.L. Rheingold, G.P.A. Yap, Organometallics 14 (1995) 5475; (b) D.M. Knotter, A.L. Spek, D.M. Grove, G. van Koten, Organometallics 11 (1992) 4083; (c) D.M. Knotter, A.L. Spek, G. van Koten, J. Chem. Soc., Chem. Commun. (1989) 1738.
- [16] (a) D.M. Knotter, H.L. van Maanen, D.M. Grove, A.L. Spek, G. van Koten, Inorg. Chem. 30 (1991) 3309; (b) D.M. Knotter, M.D. Janssen, D.M. Grove, W.J.J. Smeets, E. Horn, A.L. Spek, G. van Koten, Inorg. Chem. 30 (1991) 4361.
- [17] U. Thewalt, in: A. Slawisch (Ed.), Gmelin Handbuch der Anorganischen Chemie, Titan: Organische Verbindungen, Teil 2, Springer-Verlag, Berlin, 1980, p. 202.
- [18] (a) G.M. Sheldrick, SHELXS-86: Program for Crystal Structure Solution, Universität Göttingen, 1986; (b) G.M. Sheldrick, SHELXL-93: Program for Crystal Structure Refinement, Universität Göttingen, 1993.